Growth Opportunities in AI for Drug Target Discovery and Validation
Advancements in Deep Learning will Enable Faster and More Efficient Novel Target Discovery.
22-Jun-2022
Global
Technology Research
$4,950.00
Special Price $3,712.50 save 25 %
A major challenge in drug discovery is the limited number of gene targets that can be targeted for the development of a drug molecule. Only close to 400 genes are proven targets for US FDA-approved drugs. 80% of human genes are unexplored as targets, and some are considered undruggable.
The identification and the selection of novel drug targets (proteins/genes) have remained major challenges in drug discovery as the identification of a molecular target requires assessment of genomics, proteomics, and in vitro and in vivo experimental data interpretation. The challenge lies in the lack of technology to break down complex biological networks and map them thoroughly. Scientists find it difficult to mine through large volumes of biological data and draw meaningful insight from them. The identification of novel drug targets will open up opportunities for the development of new drug molecules and the provision of treatment options for diseases with limited/no options.
The identification of novel drug targets is built on the hypothesis developed by researchers, which is based on scientific literature and available databases, followed by experimental data that supports the hypothesis. Experimental approaches for drug target identification involve a series of experiments and the assessment of the modulations caused at the drug target site. Most hypotheses do not yield the desired outcomes and provide negative results. Carrying out in vitro studies and developing multiple assays for target identification are lengthy and time-consuming processes that involve high costs to set up experiments. Moreover, the manual interpretation of vast amounts of biological data is challenging and time consuming.
Over the years, significant advances have been made to identify novel drug targets using different approaches, including advanced bioinformatics tools and automated experimental designs, but these have failed to provide fruitful outcomes and led to financial burdens on drug developers. Nevertheless, researchers continue to develop platforms that aid successful novel target discovery.
Today, with the help of AI and ML algorithms, it is possible to identify new drug targets; moreover, developments in new modalities enable the targeting of undruggable targets, thereby increasing the success rate of drug discovery. An AI algorithm can predict a potential target through its scoring mechanism based on the data collected from gene expressions, protein-protein interactions, clinical trials, and disease biologies. The score provided by the AI algorithms is responsible for the prioritization of the drug target. High-score targets are more likely to be considered for further experimental validation. The most extensively used deep learning algorithms are convolution neural networks (CNNs), recurrent neural networks, deep belief networks, and deep neural networks.
Pharmaceutical companies are beginning to understand the value of AI due to its increasing adoption across several industries. AI algorithms are being trained using advanced biology and chemistry data, making them more efficient in terms of making accurate decisions and identifying missing links. AI in drug discovery is creating a new era of virtual drug discovery labs that are capable of both novel drug target identification and drug molecule discovery. Pharmaceutical companies are making significant investments in collaborative programs or licensing programs in AI platforms to identify novel therapeutic drugs for various diseases.
The Strategic Imperative 8™Factors Creating Pressure on Growth
The Strategic Imperative 8™
The Impact of the Top 3 Strategic Imperatives on AI for Drug Target Discovery and Validation
Growth Opportunities Fuel the Growth Pipeline Engine™
Research Methodology
Research Context
Research Scope
Key Findings
Increased Costs and Unpredictable Outcomes Limit Drug Target Discovery
Deep Learning to Drive Novel Drug Target Identification
AI Platforms Analyze Complex Biological Data from Different Sources to Arrive at Suitable Drug Targets
Parameters Covered by AI that Result in the Selection of Novel Target Identification
Enablers of AI-based Novel Drug Target Discovery
Recent Developments Driving AI-based Drug Target Discovery
Advancements in Deep Learning are Enabling the Delivery of Valuable Outcomes
Artificial Neural Networks are Being Used to Identify Novel Drug Targets
Artificial Neural Networks are Being Used to Identify Novel Drug Targets (continued)
Advances in Phenotype Screening for Target Discovery Using AI
Disease Focus Areas for AI-enabled Drug Discovery
Oncology
Neurodegenerative Diseases
Respiratory Diseases and Cardiovascular Diseases
Autoimmune Diseases and Rare Diseases
The Private Sector Funding Landscape
The Investment Portfolio of Companies Performing AI Target Identification
The Investment Stages of Companies Performing AI Target Identification
Funding Landscape—Key Takeaways
Strategic Pharmaceutical and AI Drug Discovery Company Collaborations for Target Identification
A Highly Collaborative Network of AI and Pharmaceutical Companies Involved in Target Identification
Growth Opportunity: Intuitive AI Platforms
Growth Opportunity: Intuitive AI Platforms (continued)
Growth Opportunity: Training Algorithms on Unbiased Data
Growth Opportunity: Training Algorithms on Unbiased Data (continued)
Growth Opportunity: AI drug discovery companies to focus on internal pipelines
Growth Opportunity: AI drug discovery companies to focus on internal pipelines (continued)
Simplified Workflows Using AI to Encourage Customer Acquisition for Drug Target Identification
Current Challenges in Adopting AI-based Novel Drug Target Identification
The Emergence of -Omics Databases is Enabling ML Algorithms to Identify Targets
AI Platforms are Leveraging -Omics Data for Target Discovery
Your Next Steps
Why Frost, Why Now?
Legal Disclaimer
Purchase includes:
- Report download
- Growth Dialog™ with our experts
Growth Dialog™
A tailored session with you where we identify the:- Strategic Imperatives
- Growth Opportunities
- Best Practices
- Companies to Action
Impacting your company's future growth potential.
Deliverable Type | Technology Research |
---|---|
Author | Neeraja Vettekudath |
Industries | Healthcare |
No Index | No |
Is Prebook | No |
Podcast | No |
WIP Number | DA59-01-00-00-00 |