Technology Enablers Facilitating Microbiome Adoption in Research and Development

HealthcareTechnology Enablers Facilitating Microbiome Adoption in Research and Development

Advancements in Analytical Methods and Digital Tools Fuel Growth Opportunities in Microbiome Research and Product Development

RELEASE DATE
13-Dec-2021
REGION
Global
Deliverable Type
Technology Research
Research Code: DA29-01-00-00-00
SKU: HC03482-GL-TR_26069
AvailableYesPDF Download

$4,950.00

Special Price $3,712.50 save 25 %

In stock
SKU
HC03482-GL-TR_26069

Technology Enablers Facilitating Microbiome Adoption in Research and Development
Published on: 13-Dec-2021 | SKU: HC03482-GL-TR_26069

Need more details?

$4,950.00

$3,712.50save 25 %

DownloadLink
Need more details?

Microbiome research is on the rise following technological advancements and significant cost reductions in microbiome analysis. Research has unlocked the potential of microbiome in medical use cases, yielding tremendous insights on its nature, interactions, and impact within a host and in an external environment. Advanced studies on the role of microbiota and their interactions with the host have enabled the development of innovative treatment strategies and diagnostic techniques. Research is also underway to explore microbiome applications in non-medical industries, such as agriculture, waste treatment, landfills, and marine.

Enabling technologies, namely digital technologies, omics, synthetic biology, and microbial culturing technologies, enhance microbiome research and development (R&D), manufacturing, product development, and commercialization. Advancements in digital technologies, such as big data analytics, machine learning, and artificial intelligence, contribute to collecting, synthesizing, and analyzing microbiome data for various applications. Omics technologies such as genomics, transcriptomics, proteomics, and metabolomics improve the characterization of microbiome data, host-microbiome interactions, microbial response to external stimuli, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) sequencing, and proteomics and metabolome profiles. Synthetic biology facilitates the design of engineered microbes for therapeutics, cell-based biosensors for diagnostics, and complex switches and synthetic gene networks for drug discovery. Similarly, technological developments in high-throughput culturing techniques enable the culturing of previously uncultivable microorganisms. These technology enablers open up new opportunities and applications for microbiome-based products in industries.

This Frost & Sullivan research service provides an overview of technologies enabling microbiome research. Technology enablers address challenges in microbiome data collection and analysis, product development, and manufacturing. Academic and research institutes, public and private organizations, and companies collaborate to develop and use integrated omics technologies, machine learning and artificial intelligence tools, microbial engineering through synthetic biology, and robust data analysis tools to manage vast amounts of microbiome data. Knights Lab, Metabiomics, and Eagle Genomics are examples of companies offering machine learning and data analysis tools to facilitate microbiome research. Pacific Biosciences, MacCoss Lab of the University of Washington, and IsoPlexis are advancing omics technologies to improve microbiome research and address its challenges.

The study highlights notable funding and investment trends facilitating microbiome research globally. The United States leads the funding landscape as many public and private institutions support microbiome research and adoption, resulting in increased industry-academia partnerships. The study also identifies growth opportunities for companies in the microbiome value chain and covers the following key areas:
• Current microbiome research scenario
• Challenges in microbiome research and promising solutions
• Enabling technologies for microbiome R&D, product development, and commercialization
• Key funding and investment deals
• Growth opportunities for stakeholders in the value chain

1.1 Why Is It Increasingly Difficult to Grow?The Strategic Imperative 8™: Factors Creating Pressure on Growth

1.2 The Strategic Imperative 8™

1.3 The Impact of the Top Three Strategic Imperatives on Technology Enablers for Microbiome Applications

1.4 Growth Opportunities Fuel the Growth Pipeline Engine™

2.1 Research Scope and Key Questions Addressed

2.2 Research Methodology

3.1 Introduction to Microbiome Technologies

3.2 Role of Microbiome in Human Health

3.3 Role of Microbiome Across Multiple Disease Indications

3.4 Development of Microbiome-based Products

3.5 Key Bottlenecks in Microbiome R&D and Product Development

3.6 Need for Technology Enablers in Microbiome R&D and Product Development

4.1 Role of Digital Technologies in Microbiome R&D and Product Development

4.2 Data Analytics and ML Tools to Overcome R&D Bottlenecks

4.3 Academic and Research Institutes Develop Digital Tools for Microbiome Research

4.4 Digital Innovations Facilitate Microbiome Research

5.1 Role of Omics in Microbiome R&D and Product Development

5.2 Omics Technologies Facilitate Microbiome Research

5.3 Academic and Research Institutes Advance Omics Platforms for Microbiome Analysis

5.4 Key Stakeholders Develop Omics Platforms for Microbiome R&D

5.5 Companies Keen to Use Omics Platforms for Product Development

6.1 Role of Synthetic Biology in Microbiome R&D and Product Development

6.2 Synthetic Biology Has Increasing Applications in Microbiome Therapeutics and Diagnostics

6.3 Academic and Research Institutes Focus on Microbial Engineering

6.4 Research Institutes Explore the Potential of Microbiome in Non-medical Applications

6.5 Synthetic Biology Innovations Enable Microbial Engineering

7.1 Role of Culturing Technologies in Microbiome R&D and Product Development

7.2 Innovations in Culturing Techniques Reduce R&D Lead Time

7.3 Academic Institutes Optimize Microbial Culturing Techniques

7.4 Innovations to Culture Uncultivable Microbes

8.1 Rising Investments and Research Grants for Microbiome Research

8.2 Federal Funding Bolsters Microbiome Research

8.3 Ongoing Trends in Microbiome Investments

8.4 Mergers, Acquisitions, and Collaborations Set to Increase Microbiome-based Products Commercialization

9.1 Growth Opportunity 1: Develop Advanced Data Analytics Tools for Effective Microbiome R&D and Product Development

9.1 Growth Opportunity 1: Develop Advanced Data Analytics Tools for Effective Microbiome R&D and Product Development (continued)

9.2 Growth Opportunity 2 : Standardize and Create Reference Materials to Advance Microbiome Research

9.2 Growth Opportunity 2: Standardize and Create Reference Materials to Advance Microbiome Research (continued)

9.3 Growth Opportunity 3: Synthetic Biology Techniques to Accelerate Large-scale Production of Engineered Strains

9.3 Growth Opportunity 3: Synthetic Biology Techniques to Accelerate Large-scale Production of Engineered Strains (continued)

10.1 Your Next Steps

10.2 Why Frost, Why Now?

Legal Disclaimer

Purchase includes:
  • Report download
  • Growth Dialog™ with our experts

Growth Dialog™

A tailored session with you where we identify the:
  • Strategic Imperatives
  • Growth Opportunities
  • Best Practices
  • Companies to Action

Impacting your company's future growth potential.

Microbiome research is on the rise following technological advancements and significant cost reductions in microbiome analysis. Research has unlocked the potential of microbiome in medical use cases, yielding tremendous insights on its nature, interactions, and impact within a host and in an external environment. Advanced studies on the role of microbiota and their interactions with the host have enabled the development of innovative treatment strategies and diagnostic techniques. Research is also underway to explore microbiome applications in non-medical industries, such as agriculture, waste treatment, landfills, and marine. Enabling technologies, namely digital technologies, omics, synthetic biology, and microbial culturing technologies, enhance microbiome research and development (R&D), manufacturing, product development, and commercialization. Advancements in digital technologies, such as big data analytics, machine learning, and artificial intelligence, contribute to collecting, synthesizing, and analyzing microbiome data for various applications. Omics technologies such as genomics, transcriptomics, proteomics, and metabolomics improve the characterization of microbiome data, host-microbiome interactions, microbial response to external stimuli, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) sequencing, and proteomics and metabolome profiles. Synthetic biology facilitates the design of engineered microbes for therapeutics, cell-based biosensors for diagnostics, and complex switches and synthetic gene networks for drug discovery. Similarly, technological developments in high-throughput culturing techniques enable the culturing of previously uncultivable microorganisms. These technology enablers open up new opportunities and applications for microbiome-based products in industries. This Frost & Sullivan research service provides an overview of technologies enabling microbiome research. Technology enablers address challenges in microbiome data collection and analysis, product development, and manufacturing. Academic and research institutes, public and private organizations, and companies collaborate to develop and use integrated omics technologies, machine learning and artificial intelligence tools, microbial engineering through synthetic biology, and robust data analysis tools to manage vast amounts of microbiome data. Knights Lab, Metabiomics, and Eagle Genomics are examples of companies offering machine learning and data analysis tools to facilitate microbiome research. Pacific Biosciences, MacCoss Lab of the University of Washington, and IsoPlexis are advancing omics technologies to improve microbiome research and address its challenges. The study highlights notable funding and investment trends facilitating microbiome research globally. The United States leads the funding landscape as many public and private institutions support microbiome research and adoption, resulting in increased industry-academia partnerships. The study also identifies growth opportunities for companies in the microbiome value chain and covers the following key areas: • Current microbiome research scenario • Challenges in microbiome research and promising solutions • Enabling technologies for microbiome R&D, product development, and commercialization • Key funding and investment deals • Growth opportunities for stakeholders in the value chain
More Information
Deliverable Type Technology Research
No Index No
Podcast No
Author Mohammad Hamzahanfi
Industries Healthcare
WIP Number DA29-01-00-00-00
Keyword 1 Microbiome Adoption in Research and Development
Keyword 2 Microbiome research
Keyword 3 microbiome value chain
Is Prebook No